Abstract
Surfaces with underoil superhydrophilic (UOSHL) and underwater superoleophobic (UWOHB) have great potential for on-demand emulsion separation. However, the fabrication of underoil superhydrophilic based on wetting thermodynamic principles is quite challenging. Several previous studies have shown that some sarcocarps are able to spontaneously absorb water to moisturize themselves and have a unique UOSHL ability. By mimicking this unique ability of the sarcocarp, an outstanding UWOHB and UOSHL membrane was prepared. We choose 2300 mesh stainless steel mesh (SSM) as the substrate, then grow Cu and Cu(OH)2 on SSM by a simple electrochemical method, and finally grow HKUST-1 crystals via a fast in situ growth method. The whole preparation process is simple, low cost, and does not require complex and long-term hydrothermal reactions. By growing HKUST-1 crystals, the prepared surface successfully achieved the required UOSHL and UWOHB properties. When the water droplets come into contact with the membrane under n-hexane, it will diffuse and can completely spread out in 2 s. The as-prepared membrane exhibits outstanding anti-fouling and self-cleaning properties for rapeseed oil and crude oil with high viscosity underwater due to the special wetting. By prewetting the surface with an appropriate amount of the dispersion medium, it can rapidly and efficiently on-demand separate different emulsions. The separation efficiencies of water-in-oil emulsions and oil-in-water emulsions are above 99.00 and 97.00%. With their outstanding performance in self-cleaning, on-demand emulsion separation, low cost, and fast preparation, the as-prepared UOSHL and UWOHB HKUST-1 meshes show excellent potential for treating oily wastewater in practical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.