Abstract

Structure from Motion (SfM), as a three-dimensional (3D) reconstruction technique, can estimate the structure of an object by using a single moving camera. Cameras deployed in underwater environments are generally confined to waterproof housings. Thus, the light rays entering the camera are refracted twice; once at the interface between the water and the camera housing, and again at the interface between the camera housing and air. Images captured from scenes in underwater environments are prone to, and deteriorate, from distortion caused by this refraction. Severe distortions in geometric reconstruction would be caused if the refractive distortion is not properly addressed. Here, we propose a SfM approach to deal with the refraction in a camera system including a refractive surface. The impact of light refraction is precisely modeled in the refractive model. Based on the model, a new calibration and camera pose estimation method is proposed. This proposed method assists in accurate 3D reconstruction using the refractive camera system. Experiments, including simulations and real images, show that the proposed method can achieve accurate reconstruction, and effectively reduce the refractive distortion compared to conventional SfM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call