Abstract
The underwater constitutive behavior of poly vinyl chloride foams with varying densities was investigated in this study. The experiments were conducted in an optically clear acrylic tube, which allowed for visualization of the specimen and the application of 3D Digital Image Correlation. A series of calibration experiments was conducted to investigate the applicability of the Digital Image Correlation technique for measuring the deformation of objects underwater inside of a curved acrylic tube of considerable thickness. The results of the calibration experiments demonstrated that a submerged object located in the middle of the acrylic tube appears magnified in the radial direction. This apparent magnification was taken into account during the analysis of the deformation for all underwater experiments. The hydrostatic loading was achieved by fitting the acrylic tube with a nylon piston, and compressing the piston with an Intron testing machine. Hydrostatic load of up to 5 MPa was achieved during quasi-static compression of the piston. The load applied by the Instron machine was coupled with the Digital Image Correlation data to analyze the constitutive behavior of the PVC foams. The hydraulic crush pressure, bulk modulus, and energy stored up to densification strain were determined for each foam density.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.