Abstract
Abstract Larval settlement and recruitment of sessile organisms are key ecological processes for population recovery and maintenance that occur at scales invisible to the human eye. Accordingly, proxies of recruitment have commonly been quantified using artificial substrata such as settlement tiles made of diverse materials and shapes, which are typically transported to the laboratory for examination. However, it is unknown how much bias is introduced with this sampling strategy and how recruitment quantified on tiles relates to recruitment on nearby natural substrata. Here, we applied techniques that combine macrophotography with photogrammetry (macrophotogrammetry) underwater to monitor benthic communities at submillimetre scale. This application allows the investigation of recruitment and community succession of the earliest life‐history stages in situ and on natural substrata. We tested the use of four different imaging systems, varying in costs from US$ 1400 to US$ 5440. While the most expensive SONY αRiv system provided the best visual output and ground resolution (up to 5 μm/pixel with a + 4 close‐up lens); regardless of systems, 3D models always had a ground resolution ≤23 μm/pixel and errors in planar measurements of submillimetre features were similar among systems. This level of resolution compares well with stereomicroscopy in the range of 5:1 to 10:1 magnification, while providing detailed 3D digital records through time. Using a coral reef example, we apply this approach to demonstrate how it can be used to monitor small reef areas (~300–600 cm2) through time, including the quantification of biophysical metrics such as cover of small facilitative and competitive organisms and microhabitat complexity. We further show that organisms as small 0.5 mm in size, such as 2‐month‐old coral settlers, can be located accurately within the 3D models and measured with a good level of confidence. This method can be readily applied to other benthic environments to elucidate drivers of early recruitment and recovery of benthic organisms following disturbance impacts at very fine scales, directly on natural substrata, to avoid biases inherent with laboratory‐based analyses of artificial surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.