Abstract

Underwater images often suffer from color distortion and low contrast, because light is scattered and absorbed when traveling through water. Such images with different color tones can be shot in various lighting conditions, making restoration and enhancement difficult. We propose a depth estimation method for underwater scenes based on image blurriness and light absorption, which can be used in the image formation model (IFM) to restore and enhance underwater images. Previous IFM-based image restoration methods estimate scene depth based on the dark channel prior or the maximum intensity prior. These are frequently invalidated by the lighting conditions in underwater images, leading to poor restoration results. The proposed method estimates underwater scene depth more accurately. Experimental results on restoring real and synthesized underwater images demonstrate that the proposed method outperforms other IFM-based underwater image restoration methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.