Abstract

In this article, we develop an underwater image enhancement framework based on reinforcement learning. To do this, we model the underwater image enhancement as a Markov decision process (MDP), in which states are represented by image feature maps, actions are represented by image enhancement methods, and rewards are represented by image quality improvements. The MDP trained with reinforcement learning can characterize a sequence of enhanced results for an underwater image. At each step of the MDP, a state transitions from one to another according to an action of image enhancement selected by a deep Q network. The final enhanced image in the sequence is obtained with respect to the biggest overall image quality improvement. In this manner, our reinforcement learning framework effectively organizes a sequence of image enhancement methods in a principled manner. In contrast to the black box processing schemes of deep learning methods, our reinforcement learning framework gives a sequence of specific actions, which are transparent from the implementation perspective. Benefiting from the exploration and exploitation training fashion, our reinforcement learning framework possibly generates enhanced images that are of better quality than reference images. Experimental results validate the effectiveness of our reinforcement learning framework in underwater image enhancement. The code and detailed results are available at https://gitee.com/sunshixin_upc/underwater-image-enhancement-with-reinforcement-learning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.