Abstract
Underwater image enhancement has become the requirement for more people to have a better visual experience or to extract information. However, underwater images often suffer from the mixture of color distortion and blurred quality degradation due to the external environment (light attenuation, background noise and the type of water). To solve the above problem, we design a Divide-and-Conquer network (DC-net) for enhancing underwater image, which mainly consists of a texture network, a color network and a refinement network. Specifically, the multi-axis attention block is presented in the texture network, which combine different region/channel features into a single stream structure. And the color network employs an adaptive 3D look-up table method to obtain the color enhanced results. Meanwhile, the refinement network is presented to focus on image features of ground truth. Compared to state-of-the-art (SOTA) underwater image enhance methods, our proposed method can obtain the better visual quality of underwater images and better qualitative and quantitative performance. The code is publicly available at https://github.com/zhengshijian1993/DC-Net.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.