Abstract

Underwater imaging has been increasingly employed in vision-based marine research. However, the inappropriate installation of a light source and the complex underwater environment will result in the uneven illumination and overexposure on the captured images. To address these issues, an underwater image enhancement framework for autonomous underwater vehicles platform is proposed, which consists of underwater light source optimization and illumination nonuniformity correction. The light source optimization method improves the imaging quality by computing an appropriate angle of the light casting. In this way, the center of the field of view is always well lit. In addition, an adaptive filter-based illumination correction algorithm is proposed to solve the uneven illumination caused by the artificial light source. During this process, image block segmentation and the measure of image enhancement index are applied to improve the adaptability and reduce the calculation errors of the filter parameters. A dataset with real underwater images collected under different natural conditions has been built and tested. The experimental results indicate that the proposed method is more adaptive and effective than the typical methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.