Abstract
Underwater imaging has long been focused on dehazing and color correction to address severe degradation in the water medium. In this paper, we propose a learning-based image restoration method that uses Generative Adversarial Networks (GAN). For network generality and learning flexibility, we constituted unpaired image translation frameworks into image restoration. The proposed method utilizes multiple cyclic consistency losses that capture image characteristics and details of underwater images. To prepare unpaired images of clean and degraded scenes, we collected images from Flickr and filtered out false images using image characteristics. For validation, we extensively evaluated the proposed network on simulated and real underwater hazy images. Also, we tested our method on conventional computer vision algorithms, such as the level of edges and feature matching results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Control, Automation and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.