Abstract

This paper studies the underwater glider trajectory tracking in currents field. The objective is to ensure that trajectories fit to the straight target track. The underwater glider model is introduced to demonstrate the vehicle dynamic properties. Considering currents disturbance as well as the uncertain status of the glider controlled by complicated roll policies, the trajectory tracking task can be classified into the model-free optimization. Such problem is difficult to solve with mathematical analysis. This work transfers the underwater glider trajectory tracking into a Markov Decision Process by specifying the actions and observations as well as rewards. On this basis, a neural network controls framework called experience breeding actor-critic is proposed to handle the trajectory tracking. The EBAC enhances the explorations to the potentially high reward area. And it steers glider heading meticulously so as to counteract the currents influence. Through simulation results, the EBAC shows a desired performance in controlling the gliders to accurately fit the target track

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.