Abstract

Accurate underwater gas pipeline leak localization requires particular attention due to the sensitivity of environmental conditions. Experiments were performed to analyze the localization performance of a distributed optical fiber sensing system based on the hybrid Sagnac and Mach-Zehnder interferometer. The traditional null frequency location method does not easily allow accurate location of the leakage points. To improve the positioning accuracy, the particle swarm optimization algorithm (PSO) tuning of the support vector machine (SVM) was used to predict the leakage points based on gathered leakage data. The PSO is able to optimize the SVM parameters. For the 10km range chosen, the results show the PSO-SVM average absolute error of the leakage points predicted is 66m. The prediction accuracy of leakage points is 98.25% by PSO tuning of the SVM processing. For 20 leakage test data points, the average absolute error of leakage point location is 124.8m. The leakage position predicted by the PSO algorithm after optimization of the parameters is more accurate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.