Abstract

The aim of this work was to present an effective method of generating an underwater capillary discharge at low power through gas injection (O2, air) and generating OH radicals. A flowing water (0.1 L/min) discharge was created in a quartz capillary tube (Φ = 4 mm outer; Φ = 2 mm inner; thickness = 2 mm) by applying a continuous negative DC voltage (0–4 kV) across tungsten electrodes (Φ = 0.5 mm) separated by a variable distance (1–2 mm) in the pin-pin electrode configuration. The air- and oxygen-injected capillary discharges at a constant water flow rate, similar gas injection variation rates, and two different interelectrode gaps were compared. A reduction in the breakdown voltage with increasing gas injection rate was shown. Compared to air, oxygen was proven to be more effective for generating an underwater discharge of a pulsating nature with the characteristics of high energy per pulse, higher power per pulse, short pulse width, and short pulse repetition rate. The emission spectrum of the oxygen-injected discharge showed a higher concentration of OH radicals than that of the air-injected discharge. The imaging diagnostic results showed that the discharge was brighter and more expanded when oxygen was added than it was when air was added.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.