Abstract
The extreme body size of blue whales requires a high energy intake and therefore demands efficient foraging strategies. As an obligate lunge feeder on aggregations of small zooplankton, blue whales engulf a large volume of prey-laden water in a single, rapid gulp. The efficiency of this feeding mechanism is strongly dependent on the amount of prey that can be captured during each lunge, yet food resources tend to be patchily distributed in both space and time. Here, we measured the three-dimensional kinematics and foraging behaviour of blue whales feeding on krill, using suction-cup attached multi-sensor tags. Our analyses revealed 360° rolling lunge-feeding manoeuvres that reorient the body and position the lower jaws so that a krill patch can be engulfed with the whale's body inverted. We also recorded these rolling behaviours when whales were in a searching mode in between lunges, suggesting that this behaviour also enables the whale to visually process the prey field and maximize foraging efficiency by surveying for the densest prey aggregations. These results reveal the complex manoeuvrability that is required for large rorqual whales to exploit prey patches and highlight the need to fully understand the three-dimensional interactions between predator and prey in the natural environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.