Abstract

Three-dimensional (3D) range-gated imaging has great potential in underwater target detection, navigation, and marine scientific research due to good backscatter suppression. However, in turbid water, apparent backscatter leads to bad range resolution and accuracy in 3D reconstruction. To solve this problem, a 3D deblurring-gated range-intensity correlation imaging method is proposed based on light propagation property in water. In the method, only the water attenuation coefficient and a reference image are needed to calculate the depth-noise maps (DNM) of target gate images at different ranges. By subtracting the DNMs from target gate images, new gate images with less noise can be obtained, and then 3D images with high range resolution and accuracy are reconstructed. To prove the feasibility of the proposed method, experiments have been performed in pools under different water conditions. The results show that a higher peak signal-to-noise ratio improvement is about 9 dB in new gated images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.