Abstract

AbstractQuestion: Can augmented forest stand complexity increase understory vegetation richness and cover and accelerate the development of late‐successional features? Does within‐stand understory vegetation variability increase after imposing treatments that increase stand structural complexity of the overstory? What is the relative contribution of individual stand structural components (i.e. forest matrix, gaps, and leave island reserves) to changes in understory vegetation richness?Location: Seven study sites in the Coastal Range and Cascades regions of Oregon, USA.Methods: We examined the effects of thinning six years after harvest on understory plant vascular richness and cover in 40‐ to 60‐year‐old forest stands dominated by Douglas‐fir (Pseudotsuga menziesii). At each site, one unthinned control was preserved and three thinning treatments were implemented: low complexity (LC, 300 trees ha−1), moderate complexity (MC, 200 trees ha−1), and high complexity (HC, variable densities from 100 to 300 trees ha−1). Gaps openings and leave island reserves were established in MC and HC.Results: Richness of all herbs, forest herbs, early seral herbs and shrubs, and introduced species increased in all thinning treatments, although early seral herbs and introduced species remained a small component. Only cover of early seral herbs and shrubs increased in all thinning treatments whereas forest shrub cover increased in MC and HC. In the understory, we found 284 vascular plant species. After accounting for site‐level differences, the richness of understory communities in thinned stands differed from those in control stands. Within‐treatment variability of herb and shrub richness was reduced by thinning. Matrix areas and gap openings in thinned treatments appeared to contribute to the recruitment of early seral herbs and shrubs.Conclusions: Understory vegetation richness increased 6 years after imposing treatments, with increasing stand complexity mainly because of the recruitment of early seral and forest herbs, and both low and tall shrubs. Changes in stand density did not likely lead to competitive species exclusion. The abundance of potentially invasive introduced species was much lower compared to other plant groups. Post‐thinning reductions in within‐treatment variability was caused by greater abundance of early seral herbs and shrubs in thinned stands compared with the control. Gaps and low‐density forest matrix areas created as part of spatially variably thinning had greater overall species richness. Increased overstory variability encouraged development of multiple layers of understory vegetation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.