Abstract

Environmental indicators for longleaf pine ( Pinus palustris ) ecosystems need to include some measure of understory vegetation because of its responsiveness to disturbance and management practices. To examine the characteristics of understory species that distinguish between disturbances induced by military traffic, we randomly established transects in four training intensity categories (reference, light, moderate, and heavy) and in an area that had been remediated following intense disturbance at Fort Benning, GA. A total of 134 plant species occurred in these transects with the highest diversity (95 species) in light training areas and the lowest (16 species) in heavily disturbed plots. Forty-seven species were observed in only one of the five disturbance categories. The variability in understory vegetation cover among disturbance types was trimodal ranging from less than 5% cover for heavily disturbed areas to 67% cover for reference, light, and remediated areas. High variability in species diversity and lack of difference in understory cover led us to consider life-form and plant families as indicators of military disturbance. Life-form successfully distinguished between plots based on military disturbances. Species that are Phanerophytes (trees and shrubs) were the most frequent life-form encountered in sites that experienced light infantry training. Therophytes (annuals) were the least common life-form in reference and light training areas. Chamaephytes (plants with their buds slightly above ground) were the least frequent life-form in moderate and remediation sites. Heavy training sites supported no Chamaephytes or Hemicryptophytes (plants with dormant buds at ground level). The heavy, moderate, remediated, and reference sites were all dominated by Cryptophytes (plants with underground buds) possibly because of their ability to withstand both military disturbance and ground fires (the natural disturbance of longleaf pine forests). Analysis of soils collected from each transect revealed that depth of the A layer of soil was significantly higher in reference and light training areas which may explain the life-form distributions. In addition, the diversity of plant families and, in particular, the presence of grasses and composites were indicative of training and remediation history. These results are supported by prior analysis of life-form distribution subsequent to other disturbances and demonstrate the ability of life-form and plant families to distinguish between military disturbances in longleaf pine forests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.