Abstract

Carbon-based nanomaterials are a promising platform for diverse technologies, but their rational design requires a more detailed chemical control over their structure and properties than is currently available. A long-standing challenge for the field has been in the interpretation and use of experimental X-ray spectra, especially for the amorphous and disordered forms of carbon. Here, we outline a unified approach to simultaneously and quantitatively analyze experimental X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) spectra of carbonaceous materials. We employ unsupervised machine learning to identify the most representative chemical environments and deconvolute experimental data according to these spectral contributions. To fit experimental spectra we rely on ab initio references and use all the information available: to fit experimental XAS spectra, the whole XAS fingerprint (reference) spectra of certain sites are taken into account, rather than just peak positions, as is currently the standard procedure. We argue that, even for predominantly pure-carbon materials, carbon K-edge and oxygen K-edge spectra should not be interpreted separately, since the presence of even small amounts of functional groups at the surface manifests itself on the X-ray spectroscopic signatures of both elements in an interlinked manner. Finally, we introduce the idea of carrying out simultaneous fits of XAS and XPS spectra, to reduce the number of degrees of freedom and arbitrariness of the fits. This work opens up a new direction, tightly integrating experiment and simulation, for understanding and ultimately controlling the functionalization of carbon nanomaterials at the atomic level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.