Abstract

Using ab initio molecular-dynamics simulations combined with linear-response theory, we studied the x-ray absorption near-edge spectra (XANES) of a two-temperature dense copper plasma. As the temperature increases, XANES spectra exhibit a pre-edge structure balanced by a reduction of the absorption just behind the edge. By performing systematic simulations for various thermodynamic conditions, we establish a formulation to deduce the electronic temperature Te directly from the spectral integral of the pre-edge that can be used for various thermodynamic conditions encountered in a femtosecond heating experiment where thermal non equilibrium and expanded states have to be considered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call