Abstract

Dislocation loops finely disperse in bulk W are generally visible to the transition electron microscopy (TEM) after irradiation. In the absence of strong interactions, these loops would normally diffuse very fast until being sunk at grain boundaries or at the dislocation network. In this work, we evaluate the strength of two pining effects that can explain the reason why they are nevertheless observed by TEM in bulk. On the one hand, we evaluate with density functional theory (DFT) the strength of binding between isolated loops and dissolved chemical impurities. Employing classical equations of diffusion, we estimate the resulting effective diffusion coefficient of loops. On the other hand, we consider the effect of mutual elastic interactions (MEI) between the loops, applying linear elasticity. We perform a large set of kinetic Monte Carlo (KMC) simulations, aimed at evaluating the effective diffusion coefficient, accounting for multiple interactions. Finally, we draw a map that indicates the dominant pinning effect given the experimental conditions (loop size and loop number density). Comparing with a large database of experimental TEM evidence, we conclude that pinning by dissolved impurities is the dominant effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.