Abstract

Long-term traumatic brain injury due to repeated head impacts (RHI) has been shown to be a risk factor for neurodegenerative disorders, characterized by a loss in cognitive performance. Establishing the correlation between changes in the white matter (WM) structural connectivity measures and neuropsychological test scores might help to identify the neural correlates of the scores that are used in daily clinical setting to investigate deficits due to repeated head blows. Hence, in this study, we utilized high angular diffusion MRI (dMRI) of 69 cognitively impaired and 70 nonimpaired active professional fighters from the Professional Fighters Brain Health Study, and constructed structural connectomes to understand: (a) whether there is a difference in the topological WM organization between cognitively impaired and nonimpaired active professional fighters, and (b) whether graph-theoretical measures exhibit correlations with neuropsychological scores in these groups. A dMRI derived structural connectome was constructed for every participant using brain regions defined in AAL atlas as nodes, and the product of fiber number and average fractional anisotropy of the tracts connecting the nodes as edges. Our study identified a topological WM reorganization due to RHI in fighters prone to cognitive decline that was correlated with neuropsychological scores. Furthermore, graph-theoretical measures were correlated differentially with neuropsychological scores between groups. We also found differentiated WM connectivity involving regions of hippocampus, precuneus, and insula within our cohort of cognitively impaired fighters suggesting that there is a discernible WM topological reorganization in fighters prone to cognitive decline.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call