Abstract

BackgroundUnderstanding wildlife disease ecology is becoming an urgent need due to the continuous emergence and spread of several wildlife zoonotic diseases. West Nile Virus (WNV) is the most widespread arthropod-borne virus in the world, and in recent decades there has been an increase both in geographic range, and in the frequency of symptomatic infections in humans and wildlife. The principal vector for WNV in Europe is the common house Culex pipiens mosquito, which feeds on a wide variety of vertebrate host species. Variation in mosquito feeding preference has been described as one of the most influential parameters driving intensity and timing of WNV infection in the United States, but feeding preferences for this species have been little studied in Europe.MethodsHere, we estimated feeding preference for wild Cx. pipiens in northern Italy, using molecular analysis to identify the origin of blood meals, and avian census to control host abundance variations. Additionally, we used host bird odour extracts to test experimentally mosquito preferences in the absence of environmental variations.ResultsFor the first time, we demonstrate a clear feeding preference for the common blackbird (Turdus merula), both for wild collected specimens and in the lab, suggesting a potential important role for this species in the WNV epidemiology in Europe. A seasonal decrease in abundance of blackbirds is associated with increased feeding on Eurasian magpies (Pica pica), and this may be linked to seasonal emergence of WNV in humans. Feeding preferences on blackbirds are more marked in rural areas, while preference for magpies is higher in peridomestic areas. Other species, such as the house sparrow (Passer domesticus) appear to be selected by mosquitoes opportunistically in relation to its abundance.ConclusionsOur findings provide new insights into the ecology of Cx. pipiens in Europe and may give useful indications in terms of implementing targeted WNV surveillance plans. However, a clearer understanding of spatio-temporal variations of Cx. pipiens feeding preferences, and targeted studies on reservoir competence for WNV for these species are therefore now urgently needed as this is essential to describe disease dynamics and quantify virus transmission risk.

Highlights

  • Understanding wildlife disease ecology is becoming an urgent need due to the continuous emergence and spread of several wildlife zoonotic diseases

  • The preference of Cx. pipiens for the blackbird was confirmed by the combination of two independent methods: the molecular analysis of blood meals from wild mosquitoes combined with avian census, and behavioural bioassays in laboratory. The latter methodology identifies intrinsic preferences, since it excludes potentially confounding variables such as environmental conditions, bird abundance and behaviour. These findings suggest that blackbird and magpie, along with house sparrow and collared dove, have the potential to play a crucial role in the circulation and amplification of West Nile virus in Italy

  • West Nile virus is spreading in Europe and the number of human cases is still sporadic, it is fundamental to understand the ecological mechanism driving its emergence and spread, including the contribution of different avian species as feeding hosts of Cx. pipiens mosquitoes in order to identify potential virus amplifiers

Read more

Summary

Introduction

Understanding wildlife disease ecology is becoming an urgent need due to the continuous emergence and spread of several wildlife zoonotic diseases. Transmission intensity is determined by both ‘reservoir competence’, defined as the relative ability of a reservoir host species to maintain and transmit the pathogen to a competent vector, and contact rates between hosts and vectors [3]. Variables such as climate, habitat structure, and the relative abundance and behaviour of vectors and hosts all contribute to the complexity that characterises the dynamics of transmission of vector-borne pathogens [4,5,6,7]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call