Abstract

Euglena gracilis, photosynthetic protist, has a unique ability to generate wax esters in the absence of oxygen, employing a distinctive fatty acid synthesis mechanism. Through comprehensive inhibitor assays and gene-silencing techniques, our research clearly emphasized the indispensable role of the mitochondrial anaerobic respiratory chain in this biosynthesis. We identified acyl-CoA dehydrogenase, electron transfer flavoprotein (ETF), and rhodoquinone (RQ) as central molecular components in the pathway. These findings strongly indicated a potential reversal of beta-oxidation occurring within mitochondria for fatty acid production in anaerobic conditions. Furthermore, our analysis revealed the pivotal function of nicotinamide nucleotide transhydrogenase (NNT) in efficiently managing the NADPH/NAD+ conversion essential for sustaining anaerobic metabolism. This review outlines our key findings and provides a comprehensive understanding of the molecular mechanisms that enable E. gracilis to produce wax ester anaerobically.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.