Abstract

Recent efforts to address microprocessor power dissipation through aggressive supply voltage scaling and power management require that designers be increasingly cognizant of power supply variations. These variations, primarily due to fast changes in supply current, can be attributed to architectural gating events that reduce power dissipation. In order to study this problem, the authors propose a fine-grain, parameterizable model for power-delivery networks that allows system designers to study localized, on-chip supply fluctuations in high-performance microprocessors. Using this model, the authors analyze voltage variations in the context of next-generation chip-multiprocessor (CMP) architectures using both real applications and synthetic current traces. They find that the activity of distinct cores in CMPs present several new design challenges when considering power supply noise, and they describe potentially problematic activity sequences that are unique to CMP architectures

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.