Abstract

Marine bacteriophages have been well characterized in terms of decay rates, population dynamics in relation to their hosts, and their impacts on biogeochemical cycles in the global ocean. Knowledge in soil bacteriophage ecology lags considerably behind, with few studies documenting population dynamics with hosts and even fewer reporting phage decay rates. By using sterile soil or aquatic microcosms inoculated with single bacteriophage isolates, phage decay rates (loss of infectivity over time) were determined, independent of host interactions, for 5 model phage isolates. Decay rates varied by phage from 0.11-2.07% h-1 in soils to 0.07-0.28% h-1 in aquatic microcosms. For phages incubated in both soil and aquatic microcosms, the observed decay rate was consistently higher in soil microcosms than in aquatic microcosms by at least a factor of two. However, when decay rates for soil phage isolates in the present study were compared to those reported for marine and freshwater phage isolates from previous studies, the decay constants for soil phages were, on average, 4 times lower than those for aquatic phages. Slower rates of phage decay in soils indicate a lower turnover rate, which may have subsequent and potentially far-reaching impacts on virus-mediated mortality and bacterial activity. The wide range of decay rates observed in the present study and the lack of information on this critical aspect of virus-host dynamics in soil emphasizes the need for continued research in this field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call