Abstract
Here, a cobalt dithiolene coordination polymer (CP) based on 9,10-dimethyl-2,3,6,7-anthracenetetrathiolate was synthesized via an interfacial reaction and was electrochemically characterized on glassy carbon (GCE) and graphite (GR) electrodes. Double-layer capacitance measurements, electrochemical impedance spectroscopy studies, and Tafel analyses were used to understand the role of electrochemically accessible active sites, electron and charge transfer, and electrical integration between the catalyst and the support in the resultant electrocatalytic hydrogen evolving activity. Overpotentials to achieve 10 mA/cm2 ranging from 445 to 571 mV and from 388 to 527 mV for GCE|CP and GR|CP, respectively, were observed. Changes in the double-layer capacitance, which is related to electrochemically active surface area, and charge transfer resistance were determined to be the critical factors in the observed enhancement in catalytic activity, whereas bulk catalyst loading, which had been previously used to describe...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.