Abstract

Roboticists and neuroscientists are interested in understanding and reproducing the neural and cognitive mechanisms behind the human ability to interact with unknown and changing environments as well as to learn and execute fine movements. In this paper, we review the system-level neurocomputational models of the human motor system, and we focus on biomimetic models simulating the functional activity of the cerebellum, the basal ganglia, the motor cortex, and the spinal cord, which are the main central nervous system areas involved in the learning, execution, and control of movements. We review the models that have been proposed from the early of 1970s, when the first cerebellar model was realized, up to nowadays, when the embodiment of these models into robots acting in the real world and into software agents acting in a virtual environment has become of paramount importance to close the perception-cognition-action cycle. This review shows that neurocomputational models have contributed to the comprehension and reproduction of neural mechanisms underlying reaching movements, but much remains to be done because a whole model of the central nervous system controlling musculoskeletal robots is still missing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call