Abstract

AbstractThe study utilized computational fluid dynamics (CFD) simulations employing the volume of fluid (VOF) model to analyze silicone oil–air flows in a vertical pipe with a diameter of 67 mm. Various structured meshes ensured grid independence, and the k‐ε realizable model addressed turbulence. The analysis characterized bubbly to annular flows, involving the evaluation of flow patterns, radial void fractions, void fraction time series, probability density functions (PDFs), power spectral densities (PSDs), and mean void fractions. Results indicated a transition from bubbly to annular flow with increasing gas velocities and notable changes in radial void fraction profiles. Void fraction exhibited significant variations with distinct flow patterns at constant liquid velocity. PDFs identified flow regimes, and PSDs revealed frequency patterns. CFD results were validated against experiments, demonstrating good agreement. The validated CFD model was utilized to investigate radial gas velocities and pressure drops, revealing a shift from uniform velocity distributions to irregular patterns and a decrease in total pressure drop with an increase in gas superficial velocity. The model was also applied to a water‐air system to explore two‐phase flow behaviour. The impact of superficial gas velocity on flow patterns and radial void fractions was studied through numerical analysis and compared with the silicone oil‐air system. Results showed that at extreme gas velocities (0.06 and 5.53 m/s), silicone oil exhibited bubbly and annular flows, while water displayed cap bubbly and churn flows. The significant variation in radial void fraction at these velocities emphasized the impact of fluid properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call