Abstract

AbstractThe main goal of this study was to analyze the effect of process additives, that is, maleated polypropylene (MAPP), and a nucleating agent on the viscoelastic properties of different types of extruded polypropylene (PP) wood plastic composites manufactured from either a PP homopolymer, a high crystallinity PP, or a PP impact copolymer using dynamic mechanical thermal analysis. The wood plastic composites were manufactured using 60% pine wood flour and 40% PP on a Davis‐Standard Woodtruder™. Dynamic mechanical thermal properties, polymer damping peaks (tan δ), storage modulus (E′), and loss modulus (E″) were measured using a dynamic mechanical thermal analyzer. To analyze the effect of the frequency on the dynamic mechanical properties of the various composites, DMA tests were performed over a temperature range of −20 to 100°C, at four different frequencies (1, 5, 10, and 25 Hz) and at a heating rate of 5°C/min. From these results, the activation energy of the various composites was measured using an Arrhenius relationship to investigate the effect of MAPP and the nucleating agent on the measurement of the interphase between the wood and plastic of the extruded PP wood plastic composites. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1638–1644, 2003

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.