Abstract

It is demonstrated that the surface chemistry of simple-model extreme-pressure lubricant additives, measured in ultrahigh vacuum, corresponds to that measured at higher pressures, where film growth rates are monitored using a microbalance. This chemistry and reaction kinetics are used to explain the extreme-pressure lubrication behavior by successfully modeling the measured seizure load vs. additive concentration curves. It is also demonstrated, by growing ferrous chloride films on iron substrates in ultrahigh vacuum, that these have the same friction coefficients as those found for model extreme-pressure lubricants. It is found that a monolayer of a solid boundary lubricant film is sufficient to lower the interfacial friction coefficient to its minimum value. These results demonstrate that the chemistry measured under conditions of thermodynamic equilibrium at some temperature can be successfully applied to the formation of a boundary film, in the extreme-pressure regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.