Abstract

There is interest in the development of novel surface treatments for biocompatibility and non-fouling behaviors on various surfaces of in vivo devices. Polyethylene glycol thin films have shown promise as non-fouling passivation layers for such devices. Studies of the surface chemistry and non-fouling effectiveness of plasma deposited di(ethylene glycol) vinyl ether (DEGVE) films have observed that non-fouling performance is maximized when plasma deposition occurs at low values of average power, (<5 W). [Y.J. Wu, R.B. Timmons, J.S. Jen, Frank E. Molock, Non-fouling surfaces produced by gas phase pulsed plasma polymerization of an ultra low molecular weight ethylene oxide containing monomer, Colloids and Surfaces B: Biointerfaces 18 (2000) 235–248.] Chemical properties of plasma deposited films were directly attributed to the complex interactions occurring within the gas phase. In order to better understand the deposition process, as well as the significance of the conclusions drawn by Wu et al. [Y.J. Wu, R.B. Timmons, J.S. Jen, Frank E. Molock, Non-fouling surfaces produced by gas phase pulsed plasma polymerization of an ultra low molecular weight ethylene oxide containing monomer, Colloids and Surfaces B: Biointerfaces 18 (2000) 235–248.] an investigation of the gas phase behavior in DEGVE pulsed plasma discharges was performed. Infrared spectra were used to characterize the chemical composition and dissociative behavior of DEGVE plasmas across a range of average powers. This allowed for the construction of a dissociative model of the DEGVE monomer in the plasma discharge. Analysis of the observed dissociative pattern demonstrates the presence of key daughter species which would account for the observations made on deposited DEGVE films by Wu et al. [Y.J. Wu, R.B. Timmons, J.S. Jen, Frank E. Molock, Non-fouling surfaces produced by gas phase pulsed plasma polymerization of an ultra low molecular weight ethylene oxide containing monomer, Colloids and Surfaces B: Biointerfaces 18 (2000) 235–248.].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.