Abstract

The principal objective of this study is to determine the resistance of Deinococcus radiodurans to hydrogen peroxide (H2O2) induced oxidative stress by inhibiting its thioredoxin reductase (TrxR) antioxidant system. Treatment of D. radiodurans with different TrxR inhibitors such as ebselen, epigallocatechin gallate and auranofin displayed this organism sensitivity to H2O2 treatment in a concentration-dependent manner. We observed that D. radiodurans showed greater resistance to H2O2 treatment. Further, it has also been noticed that TrxR redox system was suppressed by TrxR inhibitors and that this response might be associated with the oxidative stress-mediated cell death in D. radiodurans. Thus, TrxR inhibitors affect the resistance of the D. radiodurans through suppression of its thioredoxin redox pathway via the inhibition of TrxR. Results from this study proved that TrxR plays an important role as an antioxidant enzyme by scavenging intracellular ROS, and thus contributing to the resistance of D. radiodurans towards oxidative stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call