Abstract

The adsorptive removal of typical pharmaceuticals, carbamazepine (CBZ) and tetracycline (TC), was investigated with four zirconium-based porphyrinic metal-organic frameworks (MOFs) (PCN-221, PCN-222, PCN-223, and PCN-224). For both CBZ and TC, the adsorption capacities of the PCNs were ranked in the following order: PCN-221 < PCN-223 < PCN-224 < PCN-222. Notably, this order aligns with the BET surface areas of the PCNs. Cage-type PCN-221 showed a lower adsorption capacity than the other three channel-type MOFs due to its small apertures, which were not conducive to the activation of PCN-221 and space utilization. The amount of adsorption was proportional to the cumulative pore volume in PCNs with a width larger than that of the CBZ/TC molecule. Therefore, with high pore volume and large one-dimensional channels formed by ordered linker vacancies, PCN-222 was the best adsorbent in this work. According to the Langmuir model, PCN-222 exhibited exceptional adsorption capacities for CBZ and TC, reaching 305 mg/g and 280 mg/g, respectively. Additionally, the mechanisms for CBZ removal involved hydrogen bonding and π-π interactions/stacking, while electrostatic interactions, hydrogen bonding, and π-π interactions/stacking played crucial roles in TC adsorption onto MOFs. These findings establish a profound comprehension of the interplay between pore structure and performance, providing helpful guidance for designing MOFs to remove emerging contaminants effectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call