Abstract

When a heavy fluid is placed above a light fluid, tiny vertical perturbations in the interface create a characteristic structure of rising bubbles and falling spikes known as Rayleigh-Taylor instability. Rayleigh-Taylor instabilities have received much attention over the past half-century because of their importance in understanding many natural and man-made phenomena, ranging from the rate of formation of heavy elements in supernovae to the design of capsules for Inertial Confinement Fusion. We present a new approach to analyze Rayleigh-Taylor instabilities in which we extract a hierarchical segmentation of the mixing envelope surface to identify bubbles and analyze analogous segmentations of fields on the original interface plane. We compute meaningful statistical information that reveals the evolution of topological features and corroborates the observations made by scientists.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.