Abstract

<abstract> <p>The production of pristine graphene materials for industrialization, often limited by the complicated synthesis route, has introduced other graphene derivatives with a workable and facile synthesis route, especially for mass production. For the chemical exfoliation process, the synthesis involves oxidants and reducing agents to exfoliate the graphene layer from the 3D graphite and remove excess oxygen-containing functional groups yielding graphene-like materials known as reduced graphene oxide (rGO). This work feasibly produces rGO with nanoplatelet morphology through the green solution-processable method. Upon reduction, the crystallite size for the a-axis (<italic>L<sub>a</sub></italic>) is more prominent (22.50 Å) than the crystallite size for the c-axis (<italic>L<sub>c</sub></italic>) (11.50 Å), suggesting the nanoplatelets structure of the end product, which is also confirmed by the morphology. The integrated intensity (<italic>I</italic><sub>D</sub>/<italic>I</italic><sub>G</sub>) ratio and average defect density (<italic>n<sub>D</sub></italic>) of as-prepared rGO confirmed the sp<sup>2</sup> restoration in the graphitic structure. Overall, the Raman and X-ray diffraction (XRD) characterization parameters validate the production of rGO nanoplatelets, especially with four graphene layers per domain, suggesting that high-quality rGO are achievable and ready to be implemented for the large-scale production.</p> </abstract>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.