Abstract

AbstractThe polar Diels–Alder (DA) reactions of 2‐acetyl‐1,4‐benzoquinone (acBQ) with methyl substituted 1,3‐butadienes have been studied using DFT methods at the B3LYP/6‐31G(d) level of theory. These reactions are characterized by a nucleophilic attack of the unsubstituted ends of the 1,3‐dienes to the β conjugated position of the acBQ followed by ring‐closure. The reactions present a total regioselectivity and large endo selectivity. The analysis based on the global electrophilicity of the reagents at the ground state, and the natural bond orbital (NBO) population analysis at the transition states correctly explain the polar nature of these cycloadditions. The large electrophilic character of acBQ is responsible for the acceleration observed in these polar DA reactions. Copyright © 2008 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.