Abstract

Solar cells based on metal halide perovskites often show excellent efficiency but poor stability. This degradation of perovskite devices has been associated with the migration of mobile ions. MAPbBr3 perovskite materials are significantly more stable under ambient conditions than MAPbI3 perovskite materials. In this work, we use transient ion drift to quantify the key characteristics of ion migration in MAPbBr3 perovskite solar cells. We then proceed to compare them with those of MAPbI3 perovskite solar cells. We find that in MAPbBr3, bromide migration is the main process at play and that contrary to the case of MAPbI3, there is no evidence for methylammonium migration. Quantitatively, we find a reduced activation energy, a reduced diffusion coefficient, and a reduced concentration for halide ions in MAPbBr3 compared to MAPbI3. Understanding this difference in mobile ion migration is a crucial step in understanding the enhanced stability of MAPbBr3 versus MAPbI3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.