Abstract

The split characteristics of the tropical Mesoscale Convective System (MCS) of April 9, 2018, in northern Ghana were studied using infrasound data measured by the mobile array (I68CI) which was deployed by C?te d’Ivoire National Data Center (NDC) in collaboration with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). These infrasound measurements were made during a measurement campaign from January 1st, 2018 to December 31, 2018, in northeast Cote d’Ivoire, precisely in Comoe National Park. Graphic Progressive Multi-Channel Correlation (GPMCC) method based on a progressive study of the correlation functions was used to analyze and visualize data. The infrasound detection from this MCS shows clearly a division of the MCS structure into 2 distinct subsystems under the effect of internal and external constraints not well known but related to convection; a smaller subsystem in the north, associated with an area of intense rainfall of about 30 mm/hour and located at 9.5°N - 2°E with an azimuth of 70° and, a large subsystem in the south, associated with a zone of high rainfall of about 96 mm/hour and located at 8.8°N - 1.4°E with an azimuth of 90°. These two subsystems were located 200 km and 260 km from the I68CI station with frequencies of 2.3 Hz and 1 Hz respectively. The mesoscale convective systems in this region are moving from East to West and including several storm cells.

Highlights

  • The Comprehensive Nuclear-Test-Ban Treaty (CTBT) established an International Monitoring System (IMS) consisting of a network of radionuclide, hydroacoustic, seismic, and infrasound measurements to detect and locate nuclear explosions

  • The split characteristics of the tropical Mesoscale Convective System (MCS) of April 9, 2018, in northern Ghana were studied using infrasound data measured by the mobile array (I68CI) which was deployed by Côte d’Ivoire National Data Center (NDC) in collaboration with the Comprehensive Nuclear-Test-Ban Treaty (CTBT)

  • The mobile array I68CI is composed of four micro-barometers forming a triangle of ~1 km basis with a central point which is a typical configuration of International Monitoring System (IMS) stations

Read more

Summary

Introduction

The Comprehensive Nuclear-Test-Ban Treaty (CTBT) established an International Monitoring System (IMS) consisting of a network of radionuclide, hydroacoustic, seismic, and infrasound measurements to detect and locate nuclear explosions. The infrasound network is composed of 60 stations across the surface of the globe [2] These stations are equipped with micro-barometers that provide high-quality data that can be used to study a very large number of natural or non-natural events that can spread over tens of thousands of kilometers. In this list, we can have meteorite re-entry, erupting volcanoes [3] [4], avalanche phenomena, gravity waves [5], bolides [6], sprites [7], any types of explosions or quarry shots and Mesoscale Convective Systems (MCSs) or thunderstorms [8]. Techniques for processing these data using statistical correlation methods are used to determine wavefront characteristics (e.g. azimuth, velocity, frequency, etc.)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call