Abstract
Abstract. Hurricanes, as one of the most devastating natural hazards, have posed a great threat to people in coastal areas. A better understanding of the spatiotemporal dynamics of human settlement in hurricane-prone areas largely benefits sustainable development. This study uses the nighttime light (NTL) data from the Defense Meteorological Satellite Program's Operational Linescan System (DMSP/OLS) to examine human settlement development in areas with different levels of hurricane proneness from 1992 to 2013. The DMSP/OLS NTL data from six satellites were intercalibrated and desaturated with the Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) optical imagery to derive the Vegetation Adjusted NTL Urban Index (VANUI), a popular index that quantifies human settlement intensity. The derived VANUI time series was examined with the Mann–Kendall test and Theil–Sen test to identify significant spatiotemporal trends. To link the VANUI product to hurricane impacts, four hurricane-prone zones were extracted to represent different levels of hurricane proneness. Aside from geographic division, a wind-speed-weighted track density function was developed and applied to historical storm tracks which originated in the North Atlantic Basin to better categorize the four levels of hurricane proneness. Spatiotemporal patterns of human settlement in the four zones were finally analyzed. The results clearly exhibit a north–south and inland–coastal discrepancy of human settlement dynamics. This study also reveals that both the zonal extent and zonal increase rate of human settlement positively correlate with hurricane proneness levels. The intensified human settlement in high hurricane-exposure zones deserves further attention for coastal resilience.
Highlights
A hurricane, a specific type of tropical cyclone with a wind speed of 74 mi h−1 (119 km h−1) or higher, is one of the most devastating natural hazards in the world and is recurring more frequently than ever in coastal areas (Vecchi and Knutson, 2018)
While storms that originate in the Eastern Pacific Basin occasionally visited the southwestern conterminous US, by the time they landed they usually degraded to tropical cyclones due to the long travel distance and cold water in coastal California (Chenoweth and Landsea, 2004)
As the majority of the storms on the conterminous US are formed in the North Atlantic Basin (Fig. 1), we only examined the storms from the North Atlantic Basin along the US Atlantic and Gulf coasts
Summary
A hurricane, a specific type of tropical cyclone with a wind speed of 74 mi h−1 (119 km h−1) or higher, is one of the most devastating natural hazards in the world and is recurring more frequently than ever in coastal areas (Vecchi and Knutson, 2018). Hurricanes threatening the conterminous US mostly originate in the North Atlantic Basin that includes the North Atlantic Ocean, the Caribbean Sea and the Gulf of Mexico, and the Eastern Pacific Basin that covers the northeastern Pacific (east of 140◦ W and north of the Equator) (Goldenberg et al, 2001). While storms that originate in the Eastern Pacific Basin occasionally visited the southwestern conterminous US, by the time they landed they usually degraded to tropical cyclones due to the long travel distance and cold water in coastal California (Chenoweth and Landsea, 2004)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.