Abstract
We assess the ability of Global Climate Models participating in phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5) to simulate observed annual precipitation cycles over the Caribbean. Compared to weather station records and gridded observations, we find that both CMIP3 and CMIP5 models can be grouped into three categories: (1) models that correctly simulate a bimodal distribution with two rainfall maxima in May–June and September–October, punctuated by a mid-summer drought (MSD) in July–August; (2) models that reproduce the MSD and the second precipitation maxima only; and (3) models that simulate only one precipitation maxima, beginning in early summer. These categories appear related to model simulation of the North Atlantic Subtropical High (NASH) and sea surface temperature (SST) in the Caribbean Sea and Gulf of Mexico. Specifically, models in category 2 tend to anticipate the westward expansion of the NASH into the Caribbean in early summer. Early onset of NASH results in strong moisture divergence and MSD-like conditions at the time of the May–June observed precipitation maxima. Models in category 3 tend to have cooler SST across the region, particularly over the central Caribbean and the Gulf of Mexico, as well as a weaker Caribbean low-level jet accompanying a weaker NASH. In these models, observed June-like patterns of moisture convergence in the central Caribbean and the Central America and divergence in the east Caribbean and the Gulf of Mexico persist through September. This analysis suggests systematic biases in model structure may be responsible for biases in observed precipitation variability over the Caribbean and more confidence may be placed in the precipitation simulated by the GCMs that are able to correctly simulate seasonal cycles of SST and NASH.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.