Abstract

Absolute rate theories attempt to predict the rate constants of reactions from basic principles and independent data. For the contribution of solvent to a reaction rate constant, this requires connecting absolute rate data to fundamental solvent properties such as dielectric constant and refractive index. We have explored this connection for the unimolecular fragmentation reaction of a pinacol radical cation. The rate constants for fragmentation were measured as a function of temperature in 12 different solvents with dielectric constants from 4.7 to 36.2, and the free energies of activation for bond fragmentation in each solvent determined using transition state theory. Using the solvent effects on electron-transfer reactions as a starting point, Marcus theory was used to model the solvent effect on the reaction activation energies. The solvent contribution to both the activation free energy and the overall reaction energy is best described using the Born model rather than the Pekar solvation model. The solvent reorganization energies for bond fragmentation are substantially larger than solvent reorganization energies for electron transfer, presumably because of the requirement to translate the solvent molecules in the course of bond breaking.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.