Abstract

Background: Nowadays, microwave assisted techniques are becoming popular ecofriendly approaches in Green Chemistry. However, to date, no study has reported the microwave assisted graft copolymerization of acrylamide on carboxymethyl xanthan gum backbone. Objective: The objective of this study was to study the effect of microwave radiations on graft copolymerization of acrylamide on carboxymethyl xanthan gum. Methods: Carboxymethyl xanthan gum was grafted with acrylamide under microwave irradiation. The grafting process is optimized by varying the amount of carboxymethyl xanthan gum, acrylamide, ammonium persulphate, microwave power and exposure time. The graft copolymer was further characterized and evaluated for its efficacy. Results: Grafting was successfully optimized for higher grafting efficiency (92.4 %) and grafting (410.5 %) in a short reaction time of 150 s, at 40 times less concentration of ammonium persulphate. The characterization study confirmed the grafting of acrylamide on the hydroxyl group of carboxymethyl xanthan gum backbone. Conclusion: Microwave radiations play a vital role in graft copolymerization of acrylamide on carboxymethyl xanthan gum, in short reaction time, at 40 times less concentration of initiator. The synthesized graft copolymers remain nontoxic and also showed more antimicrobial activity than carboxymethyl xanthan gum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.