Abstract

AbstractMixtures of distributions are usually effectively used for modelling heterogeneity. It is well known that mixtures of DFR distributions are always DFR. On the other hand, mixtures of IFR distributions can decrease, at least in some intervals of time. As IFR distributions often model lifetimes governed by ageing processes, the operation of mixing can dramatically change the pattern of ageing. Therefore, the study of the shape of the observed (mixture) failure rate in a heterogeneous setting is important in many applications. We study discrete and continuous mixtures, obtain conditions for the mixture failure rate to tend to the failure rate of the strongest populations and describe asymptotic behaviour as t→∞. Some demographic and engineering examples are considered. The corresponding inverse problem is discussed. Copyright © 2009 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.