Abstract

With the ever-increasing interest in low-dimensional materials, it is urgent to understand the effect of strain on these kinds of structures. In this study, taking the CF2Si monolayer as an example, a computational study was carried out to investigate the effect of tensile shear strain on this compound. The structure was dynamically and thermodynamically stable under ambient conditions. By applying tensile shear, the structure showed a strain-driven transition from a semiconducting to a metallic behavior. This electronic transition’s nature was studied by means of the electron localization function index and an analysis of the noncovalent interactions. The result showed that the elongation of covalent bonds was not responsible for this metallization but rather noncovalent interactions governing the nonbonded bonds of the structure. This strain-tuned behavior might be capable of developing new devices with multiple properties involving the change in the nature of chemical bonding in low-dimensional structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.