Abstract

Abstract. Soil redistribution on arable land is a major threat for a sustainable use of soil resources. The majority of soil redistribution studies focus on water erosion, while wind and tillage erosion also induce pronounced redistribution of soil materials. Tillage erosion especially is understudied, as it does not lead to visible off-site damages. The analysis of on-site/in-field soil redistribution is mostly based on tracer studies, where radionuclide tracers (e.g. 137Cs, 239+240Pu) from nuclear weapon tests are commonly used to derive the erosion history over the past 50–60 years. Tracer studies allow us to determine soil redistribution patterns but integrate all types of soil redistribution processes and hence do not allow us to unravel the contribution of individual erosion processes. The aim of this study is to understand the contribution of water and tillage erosion leading to soil patterns found in a small hummocky ground moraine kettle hole catchment under intensive agricultural use. Therefore, 239+240Pu-derived soil redistribution patterns were analysed using an inverse modelling approach accounting for water and tillage erosion processes. The results of this analysis clearly point out that tillage erosion is the dominant process of soil redistribution in the study catchment, which also affects the hydrological and sedimentological connectivity between arable land and the kettle hole. A topographic change up to 17 cm (53 yr)−1 in the eroded parts of the catchment is not able to explain the current soil profile truncation that exceeds the 239+240Pu-derived topographic change substantially. Hence, tillage erosion already started before the onset of intense mechanisation since the 1960s. In general, the study stresses the urgent need to consider tillage erosion as a major soil degradation process that can be the dominant soil redistribution process in sloped arable landscapes.

Highlights

  • Soil erosion is a major threat to the supply of soil-related ecosystem services (Montanarella et al, 2016)

  • Areas of a hummocky topography with short summit–footslope distances, such as young morainic areas, can be subject to pronounced in-field soil degradation patterns caused by tillage erosion (Winnige, 2004; Deumlich et al, 2017)

  • Young morainic areas that are under intense arable cultivation and associated tillage erosion are widespread in northern Europe, Canada, the northern USA, Russia and eastern Argentina

Read more

Summary

Introduction

Soil erosion is a major threat to the supply of soil-related ecosystem services (Montanarella et al, 2016). The off-site effects associated with water erosion, like nutrient inputs from arable lands into inland waters (Pimentel and Burgess, 2013) or siltation of reservoirs (Krasa et al, 2019), have been in scientific and political focus. F. Wilken et al.: Understanding the role of water and tillage erosion fects on soil properties and agricultural productivity (Winnige, 2004; Nie et al, 2019). Areas of a hummocky topography with short summit–footslope distances, such as young morainic areas, can be subject to pronounced in-field soil degradation patterns caused by tillage erosion (Winnige, 2004; Deumlich et al, 2017). Young morainic areas that are under intense arable cultivation and associated tillage erosion are widespread in northern Europe, Canada, the northern USA, Russia and eastern Argentina

Objectives
Methods
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call