Abstract

Recent studies have highlighted that gut microbiota can alter colorectal cancer susceptibility and progression due to its impact on colorectal carcinogenesis. This work represents a comprehensive technical approach in modeling and interpreting the drug-resistance mechanisms from clinical data for patients diagnosed with colorectal cancer. To accomplish our aim, we developed a methodology based on evaluating high-performance machine learning models where a Python-based random forest classifier provides the best performance metrics, with an overall accuracy of 91.7%. Our approach identified and interpreted the most significant genera in the cases of resistant groups. Thus far, many studies point out the importance of present genera in the microbiome and intend to treat it separately. The symbiotic bacterial analysis generated different sets of joint feature combinations, providing a combined overview of the model’s predictiveness and uncovering additional data correlations where different genera joint impacts support the therapy-resistant effect. This study points out the different perspectives of treatment since our aggregate analysis gives precise results for the genera that are often found together in a resistant group of patients, meaning that resistance is not due to the presence of one pathogenic genus in the patient microbiome, but rather several bacterial genera that live in symbiosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.