Abstract

Solar cells based on perovskite absorbers are rapidly emerging as attractive candidates for photovoltaics development. Understanding the role of the electron-transport layer (ETL) is very important to obtain highly efficient perovskite solar cells. Herein, the effect of the ETL on device performance in planar perovskite solar cells is investigated in detail, and the band bending in different situations is discussed. The ET barrier is shown to be responsible for the poor fill factor (FF) of J-V curves. Introduction of a thin bathocuproine interlayer increases the interface inversion and results in an increase of FF from 56 to 76 %. Some experimental and theoretical results verify these conclusions. Furthermore, this study can provide an interface-engineering strategy to improve device performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.