Abstract

Solvent-free processing, also known as dry-processing refers to a group of manufacturing methods which avoid the use of solvents in the production of electrodes for energy storage applications. This concept has been around for more than a decade, although its popularity has increased dramatically over the last couple of years after the purchase of Maxwell technologies by Tesla. Maxwell patented a novel processing route which involves dry mixing the active material powder with a PTFE binder to form an electrode without the use of any solvent. Solvent-free processes have significant advantages in terms of sustainability, safety and cost over conventional slurry casting.A detailed analysis of the slurry casting process showed that around a quarter of the total manufacturing cost of the battery pack originated from solvent associated steps. Avoiding the use of toxic and flammable solvents such as N-methyl Pyrrolidone (NMP) also naturally leads to an improvement in the safety of the manufacturing environment. More importantly, it was reported that the manufacturing steps associated with solvent removal accounted for half of the embodied energy of a typical Li-ion battery. The embodied energy of a Li-ion battery is a crucial figure of merit in terms of sustainability which is too often neglected. To put things into perspective, Volvo has recently published a carbon footprint report for their fully electric Volvo C40 Recharge and compared it to their internal combustion engine (ICE) equivalent, the XC40. They reported that the production of the electric version generated 26 tonnes of CO2-equivalents compared to 16 tonnes for the ICE model, representing a large increase of almost 70% in the embodied energy of the car. Novel and more sustainable manufacturing processes are urgently needed to reduce as much as possible the embodied energy of Li-ion batteries and make them more sustainable to enable a durable green energy transition.Although the concept of solvent-free processing seems attractive, most of its current development is happening behind closed doors in industry. However, an in-depth characterisation of this new type of electrodes and a comparison with conventional slurry cast electrodes would be beneficial to understand the challenges and opportunities brought by these new systems and help accelerate their development on a larger scale. Within the family of solvent-free processes, three main techniques have emerged: dry painting, powder injection molding and PTFE-fibrillation. Studies dedicated to electrodes based on PTFE-fibrillation are rare and often focused on solid-state systems. In order to dispel some of the mystery surrounding the novel microstructures obtained through the PTFE-fibrillation process and their performance, this work focuses on the characterisation of these new electrodes and investigate the role of the PTFE binder on the microstructure and electrochemical performance of solvent-free electrodes. Our results highlight the crucial importance of the PTFE binder on the mechanical properties of the solvent-free electrodes and reveal how the peculiar mechanical behavior of these composite electrodes during the manufacturing process influences the final microstructure of the electrodes and their electrochemical performance. This work presents a deep insight into PTFE-based solvent-free electrodes by investigating their microstructure, mechanical and electrochemical properties using advanced characterization techniques including High Resolution Analytical Scanning Electron Microscopy, X-Ray Computed Tomography, Electrochemical Impedance Spectroscopy and mechanical testing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call