Abstract

Effective regulation reagents are essential in low-rank coal flotation for improving the floatability of ultrafine particles. Polymer regulators have great potential in the surface modification of ultrafine coal particles. A novel nonionic polymer, polyvinylpyrrolidone (PVP), is evaluated in this study to determine its effectiveness as a regulator in floating ultrafine low-rank coal. Laser particle size analysis is used to discern both the size distribution of coal particles and the change in size distribution. Contact angle tests are carried out to evaluate the wettability of low-rank coal. Surface functional groups of low-rank coal are analyzed by Fourier transform infrared spectroscopy, and the surface interaction energy is tested by X-ray photoelectron spectroscopy. The results show effective adsorption of PVP and demonstrate the effects of PVP at the coal surface. The adsorption of PVP changes the proportion of exposed carbon and oxygen-containing functional groups on the surface of low-rank coal, regulating the size distribution of low-rank coal particles in suspension. The success of polyvinylpyrrolidone as a regulator in low-rank coal flotation is demonstrated, and the mechanisms by which PVP can affect ultrafine low-rank coal flotation are elucidated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call