Abstract
AbstractEngineering oxygen vacancies (Vo) in metal–organic framework (MOF) is considered as an effective strategy to improve the hydrazine oxidation reaction (HzOR) performance. However, the role of Vo and the metal sites for HzOR is still not fully understood. Herein, this study reports the synthesis of a well‐defined bimetallic VO‐rich benzene dicarboxylic acid‐based MOF (NiIr0.03‐BDC) as a model to clarify the intricate catalytic mechanism. Operando characterizations demonstrate that the Vo‐rich environment favors the adsorption of OH− on the catalyst surface during the HzOR process, leading to the formation of Ni(OH)x active species. Theoretical calculations reveal that the introduced Ir at metal nodes not only boosts the HzOR activity of the Ni sites by tuning their electronic structure but also serves as the active sites for hydrogen evolution. As a result, the two‐electrode electrolyzer with NiIr0.03‐BDC || NiIr0.03‐BDC configuration achieved 10 mA cm−2 at an ultralow cell voltage of 0.046 V. This work provides new insights into oxygen vacancy defect engineering of MOFs and paves a solid step for low‐energy consumption hydrogen production.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.