Abstract
In patients with chronic myeloid leukemia (CML) resistant to imatinib, resistance is commonly associated with mutations in the BCR-ABL protein. Approximately 85% to 90% of resistance-associated mutations occur within the ABL kinase domain, and confer resistance either directly, by blocking imatinib binding, or indirectly, by altering the conformation of BCR-ABL. The degree of resistance depends on the mutation, with some remaining sensitive to imatinib. Imatinib dose escalation may overcome resistance in some of these patients or therapy can be switched to the second-generation tyrosine kinase inhibitors (TKIs) nilotinib or dasatinib. The long-term efficacy of second-generation TKIs may also be related to specific BCR-ABL mutations, with the T315I mutant remaining resistant to all currently available TKIs. Other treatments, including investigational agents, may be options for patients with this mutation. The choice of therapy should be guided by multiple factors, including mutational analysis, disease phase, patient characteristics, and the safety profile of the agents.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.